Satellite Orbit Determination Using a Single-Channel Global Positioning System Receiver
نویسنده
چکیده
A proposed satellite orbit determination system has been analyzed, one that uses measurements from a single-channel Global Positioning System (GPS) receiver. The purpose of this study is to predict the likely efficacy of a low-power autonomous orbit determination system. The system processes the pseudo range outputs of the receiver using an extended Kalman filter. The receiver cycles through different GPS satellites, tracking a new one every 75 seconds, in order to achieve observability and reasonable accuracy. The Kalman filter uses a dynamic model of the spacecraft orbit and of the receiver clock's drift. Simulation results predict that the system can achieve peak per-axis position errors that range from 78 m to 144 m when in low Earth orbit. The accuracy depends on the level of uncertainty in the orbital dynamics model. The system can also operate in a geosynchronous orbit, but its peak per-axis error degrades to 7 km if the filter neglects Solar and Lunar gravity terms, and the geosynchronous receiver must use an ovenized crystal oscillator as its clock.
منابع مشابه
Precise Real-Time Navigation of LEO Satellites Using a Single-Frequency GPS Receiver and Ultra-Rapid Ephemerides
Precise (sub-meter level) real-time navigation using a space-capable single-frequency global positioning system (GPS) receiver and ultra-rapid (real-time) ephemerides from the international global navigation satellite systems service is proposed for low-Earth-orbiting (LEO) satellites. The C/A code and L1 carrier phase measurements are combined and single-differenced to eliminate first-order io...
متن کاملMicroGPS for Low-Cost Orbit Determination
This article presents a new technology for satellite orbit determination using a simple Global Positioning System (GPS) receiver (microGPS) with ultra-low cost, power, and mass. The capability of low-cost orbit determination with microGPS for a low Earth-orbiting satellite, Student Nitric Oxide Explorer (SNOE), is demonstrated using actual GPS data from the GPS/Meteorology (MET) satellite. The ...
متن کاملIranian Permanent GPS Network Receivers Differential Code Biases Estimation Using Global Ionospheric Maps
Measurements of the dual frequency Global Positioning System (GPS) receivers can be used to calculate the electron density and the total electron content (TEC) of the ionosphere layer of the Earth atmosphere. TEC is a key parameter for investigating the ongoing spatial and temporal physical process of the ionosphere. For accurate estimation of TEC from GPS measurements, GPS satellites and GPS r...
متن کاملAnalysis of Gnss Data Using Precise Point Positioning Technique for the Determination of Permanent Station in Romania
To obtain the coordinates by means of precise point positioning (PPP) technique we need to use the undifferenced GPS pseudocode and carrier phase observations but to obtain the “precise” positioning we need precise orbit and clock data too. This products and other information for obtaining the results by using PPP technique on a centimeter level accuracy can be downloaded from different locatio...
متن کاملEvaluation of Geometric and Atmospheric Doppler for GNSS-RO Payloads
To reduce the sampling rate in global navigation satellite system (GNSS)-radio occultation receivers, it is essential to establish a suitable estimation of Doppler frequency from the received signal in the satellite onboard receiver. This receiver is usually located on low earth orbit satellite and receives GNSS satellites signal in the occultation situation. The occurred Doppler on the signal ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001